001/*
002 * The contents of this file are subject to the terms of the Common Development and
003 * Distribution License (the License). You may not use this file except in compliance with the
004 * License.
005 *
006 * You can obtain a copy of the License at legal/CDDLv1.0.txt. See the License for the
007 * specific language governing permission and limitations under the License.
008 *
009 * When distributing Covered Software, include this CDDL Header Notice in each file and include
010 * the License file at legal/CDDLv1.0.txt. If applicable, add the following below the CDDL
011 * Header, with the fields enclosed by brackets [] replaced by your own identifying
012 * information: "Portions copyright [year] [name of copyright owner]".
013 *
014 * Copyright 2015-2016 ForgeRock AS.
015 */
016
017
018package org.forgerock.util.encode;
019
020import java.util.Arrays;
021
022/**
023 * A very fast and memory efficient class to encode and decode to and from
024 * BASE64 in full accordance with RFC 2045.<br>
025 * <br>
026 * On Windows XP sp1 with 1.4.2_04 and later ;), this encoder and decoder is
027 * about 10 times faster on small arrays (10 - 1000 bytes) and 2-3 times as fast
028 * on larger arrays (10000 - 1000000 bytes) compared to
029 * <code>sun.misc.Encoder()/Decoder()</code>.<br>
030 * <br>
031 * On byte arrays the encoder is about 20% faster than Jakarta Commons Base64
032 * Codec for encode and about 50% faster for decoding large arrays. This
033 * implementation is about twice as fast on very small arrays (&lt; 30 bytes).
034 * If source/destination is a <code>String</code> this version is about three
035 * times as fast due to the fact that the Commons Codec result has to be recoded
036 * to a <code>String</code> from <code>byte[]</code>, which is very expensive.<br>
037 * <br>
038 * This encode/decode algorithm doesn't create any temporary arrays as many
039 * other codecs do, it only allocates the resulting array. This produces less
040 * garbage and it is possible to handle arrays twice as large as algorithms that
041 * create a temporary array. (E.g. Jakarta Commons Codec). It is unknown whether
042 * Sun's <code>sun.misc.Encoder()/Decoder()</code> produce temporary arrays but
043 * since performance is quite low it probably does.<br>
044 * <br>
045 * The encoder produces the same output as the Sun one except that the Sun's
046 * encoder appends a trailing line separator if the last character isn't a pad.
047 * Unclear why but it only adds to the length and is probably a side effect.
048 * Both are in conformance with RFC 2045 though.<br>
049 * Commons codec seem to always att a trailing line separator.<br>
050 * <br>
051 * <b>Note!</b> The encode/decode method pairs (types) come in three versions
052 * with the <b>exact</b> same algorithm and thus a lot of code redundancy. This
053 * is to not create any temporary arrays for transcoding to/from different
054 * format types. The methods not used can simply be commented out.<br>
055 * <br>
056 * There is also a "fast" version of all decode methods that works the same way
057 * as the normal ones, but har a few demands on the decoded input. Normally
058 * though, these fast verions should be used if the source if the input is known
059 * and it hasn't bee tampered with.<br>
060 * <br>
061 * If you find the code useful or you find a bug, please send me a note at
062 * base64 @ miginfocom . com.
063 *
064 * @version 2.2
065 */
066public final class Base64 {
067
068    private static final char[] CA =
069            "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray();
070    private static final int[] IA = new int[256];
071
072    static {
073        Arrays.fill(IA, -1);
074        for (int i = 0, iS = CA.length; i < iS; i++) {
075            IA[CA[i]] = i;
076        }
077        IA['='] = 0;
078    }
079
080    /**
081     * Decodes a BASE64 encoded byte array. All illegal characters will be
082     * ignored and can handle both arrays with and without line separators.
083     *
084     * @param sArr
085     *            The source array. Length 0 will return an empty array.
086     *            <code>null</code> will throw an exception.
087     * @return The decoded array of bytes. May be of length 0. Will be
088     *         <code>null</code> if the legal characters (including '=') isn't
089     *         divideable by 4. (I.e. definitely corrupted).
090     */
091    public static byte[] decode(final byte[] sArr) {
092        // Check special case
093        final int sLen = sArr.length;
094
095        /*
096         * Count illegal characters (including '\r', '\n') to know what size the
097         * returned array will be, so we don't have to reallocate & copy it
098         * later.
099         */
100        int sepCnt = 0; // Number of separator characters. (Actually illegal characters, but that's a bonus...)
101        // If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be removed.
102        for (byte aSArr : sArr) {
103            if (IA[aSArr & 0xff] < 0) {
104                sepCnt++;
105            }
106        }
107
108        /*
109         * Check so that legal chars (including '=') are evenly divideable by 4
110         * as specified in RFC 2045.
111         */
112        if ((sLen - sepCnt) % 4 != 0) {
113            return null;
114        }
115
116        int pad = 0;
117        for (int i = sLen; i > 1 && IA[sArr[--i] & 0xff] <= 0;) {
118            if (sArr[i] == '=') {
119                pad++;
120            }
121        }
122
123        final int len = ((sLen - sepCnt) * 6 >> 3) - pad;
124
125        final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
126
127        for (int s = 0, d = 0; d < len;) {
128            // Assemble three bytes into an int from four "valid" characters.
129            int i = 0;
130            for (int j = 0; j < 4; j++) { // j only increased if a valid char was found.
131                final int c = IA[sArr[s++] & 0xff];
132                if (c >= 0) {
133                    i |= c << 18 - j * 6;
134                } else {
135                    j--;
136                }
137            }
138
139            // Add the bytes
140            dArr[d++] = (byte) (i >> 16);
141            if (d < len) {
142                dArr[d++] = (byte) (i >> 8);
143                if (d < len) {
144                    dArr[d++] = (byte) i;
145                }
146            }
147        }
148
149        return dArr;
150    }
151
152    /**
153     * Decodes a BASE64 encoded char array. All illegal characters will be
154     * ignored and can handle both arrays with and without line separators.
155     *
156     * @param sArr
157     *            The source array. <code>null</code> or length 0 will return an
158     *            empty array.
159     * @return The decoded array of bytes. May be of length 0. Will be
160     *         <code>null</code> if the legal characters (including '=') isn't
161     *         divideable by 4. (I.e. definitely corrupted).
162     */
163    public static byte[] decode(final char[] sArr) {
164        // Check special case
165        final int sLen = sArr != null ? sArr.length : 0;
166        if (sLen == 0) {
167            return new byte[0];
168        }
169
170        /*
171         * Count illegal characters (including '\r', '\n') to know what size the
172         * returned array will be, so we don't have to reallocate & copy it
173         * later.
174         */
175        // Number of separator characters. (Actually illegal characters, but that's a bonus...)
176        int sepCnt = 0;
177        // If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
178        for (int i = 0; i < sLen; i++) {
179            if (IA[sArr[i]] < 0) {
180                sepCnt++;
181            }
182        }
183
184        /*
185         * Check so that legal chars (including '=') are evenly divideable by 4
186         * as specified in RFC 2045.
187         */
188        if ((sLen - sepCnt) % 4 != 0) {
189            return null;
190        }
191
192        int pad = 0;
193        for (int i = sLen; i > 1 && IA[sArr[--i]] <= 0;) {
194            if (sArr[i] == '=') {
195                pad++;
196            }
197        }
198
199        final int len = ((sLen - sepCnt) * 6 >> 3) - pad;
200
201        final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
202
203        for (int s = 0, d = 0; d < len;) {
204            // Assemble three bytes into an int from four "valid" characters.
205            int i = 0;
206            for (int j = 0; j < 4; j++) { // j only increased if a valid char was found.
207                final int c = IA[sArr[s++]];
208                if (c >= 0) {
209                    i |= c << 18 - j * 6;
210                } else {
211                    j--;
212                }
213            }
214            // Add the bytes
215            dArr[d++] = (byte) (i >> 16);
216            if (d < len) {
217                dArr[d++] = (byte) (i >> 8);
218                if (d < len) {
219                    dArr[d++] = (byte) i;
220                }
221            }
222        }
223        return dArr;
224    }
225
226    /**
227     * Decodes a BASE64 encoded <code>String</code>. All illegal characters will
228     * be ignored and can handle both strings with and without line separators.<br>
229     * <b>Note!</b> It can be up to about 2x the speed to call
230     * <code>decode(str.toCharArray())</code> instead. That will create a
231     * temporary array though. This version will use <code>str.charAt(i)</code>
232     * to iterate the string.
233     *
234     * @param str
235     *            The source string. <code>null</code> or length 0 will return
236     *            an empty array.
237     * @return The decoded array of bytes. May be of length 0. Will be
238     *         <code>null</code> if the legal characters (including '=') isn't
239     *         divideable by 4. (I.e. definitely corrupted).
240     */
241    public static byte[] decode(final String str) {
242        // Check special case
243        final int sLen = str != null ? str.length() : 0;
244        if (sLen == 0) {
245            return new byte[0];
246        }
247
248        /*
249         * Count illegal characters (including '\r', '\n') to know what size the
250         * returned array will be, so we don't have to reallocate & copy it
251         * later.
252         */
253        // Number of separator characters. (Actually illegal characters, but that's a bonus...)
254        int sepCnt = 0;
255        // If input is "pure" (I.e. no line separators or illegal chars) base64 this loop can be commented out.
256        for (int i = 0; i < sLen; i++) {
257            if (IA[str.charAt(i)] < 0) {
258                sepCnt++;
259            }
260        }
261
262        /*
263         * Check so that legal chars (including '=') are evenly divideable by 4
264         * as specified in RFC 2045.
265         */
266        if ((sLen - sepCnt) % 4 != 0) {
267            return null;
268        }
269
270        // Count '=' at end
271        int pad = 0;
272        for (int i = sLen; i > 1 && IA[str.charAt(--i)] <= 0;) {
273            if (str.charAt(i) == '=') {
274                pad++;
275            }
276        }
277
278        final int len = ((sLen - sepCnt) * 6 >> 3) - pad;
279
280        final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
281
282        for (int s = 0, d = 0; d < len;) {
283            // Assemble three bytes into an int from four "valid" characters.
284            int i = 0;
285            for (int j = 0; j < 4; j++) { // j only increased if a valid char was found.
286                final int c = IA[str.charAt(s++)];
287                if (c >= 0) {
288                    i |= c << 18 - j * 6;
289                } else {
290                    j--;
291                }
292            }
293            // Add the bytes
294            dArr[d++] = (byte) (i >> 16);
295            if (d < len) {
296                dArr[d++] = (byte) (i >> 8);
297                if (d < len) {
298                    dArr[d++] = (byte) i;
299                }
300            }
301        }
302        return dArr;
303    }
304
305    /**
306     * Decodes a BASE64 encoded byte array that is known to be resonably well
307     * formatted. The method is about twice as fast as {@link #decode(byte[])}.
308     * The preconditions are:<br>
309     * + The array must have a line length of 76 chars OR no line separators at
310     * all (one line).<br>
311     * + Line separator must be "\r\n", as specified in RFC 2045 + The array
312     * must not contain illegal characters within the encoded string<br>
313     * + The array CAN have illegal characters at the beginning and end, those
314     * will be dealt with appropriately.<br>
315     *
316     * @param sArr
317     *            The source array. Length 0 will return an empty array.
318     *            <code>null</code> will throw an exception.
319     * @return The decoded array of bytes. May be of length 0.
320     */
321    public static byte[] decodeFast(final byte[] sArr) {
322        // Check special case
323        final int sLen = sArr.length;
324        if (sLen == 0) {
325            return new byte[0];
326        }
327
328        int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
329
330        // Trim illegal chars from start
331        while (sIx < eIx && IA[sArr[sIx] & 0xff] < 0) {
332            sIx++;
333        }
334
335        // Trim illegal chars from end
336        while (eIx > 0 && IA[sArr[eIx] & 0xff] < 0) {
337            eIx--;
338        }
339
340        // get the padding count (=) (0, 1 or 2)
341        final int pad = sArr[eIx] == '=' ? sArr[eIx - 1] == '=' ? 2 : 1 : 0; // Count '=' at end.
342        final int cCnt = eIx - sIx + 1; // Content count including possible separators
343        final int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
344
345        final int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
346        final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
347
348        // Decode all but the last 0 - 2 bytes.
349        int d = 0;
350        for (int cc = 0, eLen = len / 3 * 3; d < eLen;) {
351            // Assemble three bytes into an int from four "valid" characters.
352            final int i =
353                    IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12 | IA[sArr[sIx++]] << 6
354                            | IA[sArr[sIx++]];
355
356            // Add the bytes
357            dArr[d++] = (byte) (i >> 16);
358            dArr[d++] = (byte) (i >> 8);
359            dArr[d++] = (byte) i;
360
361            // If line separator, jump over it.
362            if (sepCnt > 0 && ++cc == 19) {
363                sIx += 2;
364                cc = 0;
365            }
366        }
367
368        if (d < len) {
369            // Decode last 1-3 bytes (incl '=') into 1-3 bytes
370            int i = 0;
371            for (int j = 0; sIx <= eIx - pad; j++) {
372                i |= IA[sArr[sIx++]] << 18 - j * 6;
373            }
374
375            for (int r = 16; d < len; r -= 8) {
376                dArr[d++] = (byte) (i >> r);
377            }
378        }
379
380        return dArr;
381    }
382
383    /**
384     * Decodes a BASE64 encoded char array that is known to be resonably well
385     * formatted. The method is about twice as fast as {@link #decode(char[])}.
386     * The preconditions are:<br>
387     * + The array must have a line length of 76 chars OR no line separators at
388     * all (one line).<br>
389     * + Line separator must be "\r\n", as specified in RFC 2045 + The array
390     * must not contain illegal characters within the encoded string<br>
391     * + The array CAN have illegal characters at the beginning and end, those
392     * will be dealt with appropriately.<br>
393     *
394     * @param sArr
395     *            The source array. Length 0 will return an empty array.
396     *            <code>null</code> will throw an exception.
397     * @return The decoded array of bytes. May be of length 0.
398     */
399    public static byte[] decodeFast(final char[] sArr) {
400        // Check special case
401        final int sLen = sArr.length;
402        if (sLen == 0) {
403            return new byte[0];
404        }
405
406        int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
407
408        // Trim illegal chars from start
409        while (sIx < eIx && IA[sArr[sIx]] < 0) {
410            sIx++;
411        }
412
413        // Trim illegal chars from end
414        while (eIx > 0 && IA[sArr[eIx]] < 0) {
415            eIx--;
416        }
417
418        // get the padding count (=) (0, 1 or 2)
419        final int pad = sArr[eIx] == '=' ? sArr[eIx - 1] == '=' ? 2 : 1 : 0; // Count '=' at end.
420        final int cCnt = eIx - sIx + 1; // Content count including possible separators
421        final int sepCnt = sLen > 76 ? (sArr[76] == '\r' ? cCnt / 78 : 0) << 1 : 0;
422
423        final int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
424        final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
425
426        // Decode all but the last 0 - 2 bytes.
427        int d = 0;
428        for (int cc = 0, eLen = len / 3 * 3; d < eLen;) {
429            // Assemble three bytes into an int from four "valid" characters.
430            final int i =
431                    IA[sArr[sIx++]] << 18 | IA[sArr[sIx++]] << 12 | IA[sArr[sIx++]] << 6
432                            | IA[sArr[sIx++]];
433
434            // Add the bytes
435            dArr[d++] = (byte) (i >> 16);
436            dArr[d++] = (byte) (i >> 8);
437            dArr[d++] = (byte) i;
438
439            // If line separator, jump over it.
440            if (sepCnt > 0 && ++cc == 19) {
441                sIx += 2;
442                cc = 0;
443            }
444        }
445
446        if (d < len) {
447            // Decode last 1-3 bytes (incl '=') into 1-3 bytes
448            int i = 0;
449            for (int j = 0; sIx <= eIx - pad; j++) {
450                i |= IA[sArr[sIx++]] << 18 - j * 6;
451            }
452
453            for (int r = 16; d < len; r -= 8) {
454                dArr[d++] = (byte) (i >> r);
455            }
456        }
457
458        return dArr;
459    }
460
461    /**
462     * Decodes a BASE64 encoded string that is known to be resonably well
463     * formatted. The method is about twice as fast as {@link #decode(String)}.
464     * The preconditions are:<br>
465     * + The array must have a line length of 76 chars OR no line separators at
466     * all (one line).<br>
467     * + Line separator must be "\r\n", as specified in RFC 2045 + The array
468     * must not contain illegal characters within the encoded string<br>
469     * + The array CAN have illegal characters at the beginning and end, those
470     * will be dealt with appropriately.<br>
471     *
472     * @param s
473     *            The source string. Length 0 will return an empty array.
474     *            <code>null</code> will throw an exception.
475     * @return The decoded array of bytes. May be of length 0.
476     */
477    public static byte[] decodeFast(final String s) {
478        // Check special case
479        final int sLen = s.length();
480        if (sLen == 0) {
481            return new byte[0];
482        }
483
484        int sIx = 0, eIx = sLen - 1; // Start and end index after trimming.
485
486        // Trim illegal chars from start
487        while (sIx < eIx && IA[s.charAt(sIx) & 0xff] < 0) {
488            sIx++;
489        }
490
491        // Trim illegal chars from end
492        while (eIx > 0 && IA[s.charAt(eIx) & 0xff] < 0) {
493            eIx--;
494        }
495
496        // get the padding count (=) (0, 1 or 2)
497        final int pad = s.charAt(eIx) == '=' ? s.charAt(eIx - 1) == '=' ? 2 : 1 : 0; // Count '=' at end.
498        final int cCnt = eIx - sIx + 1; // Content count including possible separators
499        final int sepCnt = sLen > 76 ? (s.charAt(76) == '\r' ? cCnt / 78 : 0) << 1 : 0;
500
501        final int len = ((cCnt - sepCnt) * 6 >> 3) - pad; // The number of decoded bytes
502        final byte[] dArr = new byte[len]; // Preallocate byte[] of exact length
503
504        // Decode all but the last 0 - 2 bytes.
505        int d = 0;
506        for (int cc = 0, eLen = len / 3 * 3; d < eLen;) {
507            // Assemble three bytes into an int from four "valid" characters.
508            final int i =
509                    IA[s.charAt(sIx++)] << 18 | IA[s.charAt(sIx++)] << 12
510                            | IA[s.charAt(sIx++)] << 6 | IA[s.charAt(sIx++)];
511
512            // Add the bytes
513            dArr[d++] = (byte) (i >> 16);
514            dArr[d++] = (byte) (i >> 8);
515            dArr[d++] = (byte) i;
516
517            // If line separator, jump over it.
518            if (sepCnt > 0 && ++cc == 19) {
519                sIx += 2;
520                cc = 0;
521            }
522        }
523
524        if (d < len) {
525            // Decode last 1-3 bytes (incl '=') into 1-3 bytes
526            int i = 0;
527            for (int j = 0; sIx <= eIx - pad; j++) {
528                i |= IA[s.charAt(sIx++)] << 18 - j * 6;
529            }
530
531            for (int r = 16; d < len; r -= 8) {
532                dArr[d++] = (byte) (i >> r);
533            }
534        }
535
536        return dArr;
537    }
538
539    /**
540     * This method is using {@link #encode(byte[], boolean)}, and it only exists
541     * so we don't break the API.
542     *
543     * @param content
544     *            The bytearray that needs to be Base64 encoded
545     * @return the Base64 encoded
546     */
547    public static String encode(final byte[] content) {
548        return encode(content, false);
549    }
550
551    /**
552     * Encodes a raw byte array into a BASE64 <code>String</code> representation
553     * i accordance with RFC 2045.
554     *
555     * @param sArr
556     *            The bytes to convert. If <code>null</code> or length 0 an
557     *            empty array will be returned.
558     * @param lineSep
559     *            Optional "\r\n" after 76 characters, unless end of file.<br>
560     *            No line separator will be in breach of RFC 2045 which
561     *            specifies max 76 per line but will be a little faster.
562     * @return A BASE64 encoded array. Never <code>null</code>.
563     */
564    public static String encode(final byte[] sArr, final boolean lineSep) {
565        /*
566         * Reuse char[] since we can't create a String incrementally anyway and
567         * StringBuffer/Builder would be slower.
568         */
569        return new String(encodeToChar(sArr, lineSep));
570    }
571
572    /**
573     * Encodes a raw byte array into a BASE64 <code>byte[]</code> representation
574     * i accordance with RFC 2045.
575     *
576     * @param sArr
577     *            The bytes to convert. If <code>null</code> or length 0 an
578     *            empty array will be returned.
579     * @param lineSep
580     *            Optional "\r\n" after 76 characters, unless end of file.<br>
581     *            No line separator will be in breach of RFC 2045 which
582     *            specifies max 76 per line but will be a little faster.
583     * @return A BASE64 encoded array. Never <code>null</code>.
584     */
585    public static byte[] encodeToByte(final byte[] sArr, final boolean lineSep) {
586        // Check special case
587        final int sLen = sArr != null ? sArr.length : 0;
588        if (sLen == 0) {
589            return new byte[0];
590        }
591
592        final int eLen = sLen / 3 * 3; // Length of even 24-bits.
593        final int cCnt = (sLen - 1) / 3 + 1 << 2; // Returned character count
594        final int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of returned array
595        final byte[] dArr = new byte[dLen];
596
597        // Encode even 24-bits
598        for (int s = 0, d = 0, cc = 0; s < eLen;) {
599            // Copy next three bytes into lower 24 bits of int, paying attension to sign.
600            final int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8 | sArr[s++] & 0xff;
601
602            // Encode the int into four chars
603            dArr[d++] = (byte) CA[i >>> 18 & 0x3f];
604            dArr[d++] = (byte) CA[i >>> 12 & 0x3f];
605            dArr[d++] = (byte) CA[i >>> 6 & 0x3f];
606            dArr[d++] = (byte) CA[i & 0x3f];
607
608            // Add optional line separator
609            if (lineSep && ++cc == 19 && d < dLen - 2) {
610                dArr[d++] = '\r';
611                dArr[d++] = '\n';
612                cc = 0;
613            }
614        }
615
616        // Pad and encode last bits if source isn't an even 24 bits.
617        final int left = sLen - eLen; // 0 - 2.
618        if (left > 0) {
619            // Prepare the int
620            final int i =
621                    (sArr[eLen] & 0xff) << 10 | (left == 2 ? (sArr[sLen - 1] & 0xff) << 2 : 0);
622
623            // Set last four chars
624            dArr[dLen - 4] = (byte) CA[i >> 12];
625            dArr[dLen - 3] = (byte) CA[i >>> 6 & 0x3f];
626            dArr[dLen - 2] = left == 2 ? (byte) CA[i & 0x3f] : (byte) '=';
627            dArr[dLen - 1] = '=';
628        }
629        return dArr;
630    }
631
632    /**
633     * Encodes a raw byte array into a BASE64 <code>char[]</code> representation
634     * i accordance with RFC 2045.
635     *
636     * @param sArr
637     *            The bytes to convert. If <code>null</code> or length 0 an
638     *            empty array will be returned.
639     * @param lineSep
640     *            Optional "\r\n" after 76 characters, unless end of file.<br>
641     *            No line separator will be in breach of RFC 2045 which
642     *            specifies max 76 per line but will be a little faster.
643     * @return A BASE64 encoded array. Never <code>null</code>.
644     */
645    public static char[] encodeToChar(final byte[] sArr, final boolean lineSep) {
646        // Check special case
647        final int sLen = sArr != null ? sArr.length : 0;
648        if (sLen == 0) {
649            return new char[0];
650        }
651
652        final int eLen = sLen / 3 * 3; // Length of even 24-bits.
653        final int cCnt = (sLen - 1) / 3 + 1 << 2; // Returned character count
654        final int dLen = cCnt + (lineSep ? (cCnt - 1) / 76 << 1 : 0); // Length of returned array
655        final char[] dArr = new char[dLen];
656
657        // Encode even 24-bits
658        for (int s = 0, d = 0, cc = 0; s < eLen;) {
659            // Copy next three bytes into lower 24 bits of int, paying attension to sign.
660            final int i = (sArr[s++] & 0xff) << 16 | (sArr[s++] & 0xff) << 8 | sArr[s++] & 0xff;
661
662            // Encode the int into four chars
663            dArr[d++] = CA[i >>> 18 & 0x3f];
664            dArr[d++] = CA[i >>> 12 & 0x3f];
665            dArr[d++] = CA[i >>> 6 & 0x3f];
666            dArr[d++] = CA[i & 0x3f];
667
668            // Add optional line separator
669            if (lineSep && ++cc == 19 && d < dLen - 2) {
670                dArr[d++] = '\r';
671                dArr[d++] = '\n';
672                cc = 0;
673            }
674        }
675
676        // Pad and encode last bits if source isn't even 24 bits.
677        final int left = sLen - eLen; // 0 - 2.
678        if (left > 0) {
679            // Prepare the int
680            final int i =
681                    (sArr[eLen] & 0xff) << 10 | (left == 2 ? (sArr[sLen - 1] & 0xff) << 2 : 0);
682
683            // Set last four chars
684            dArr[dLen - 4] = CA[i >> 12];
685            dArr[dLen - 3] = CA[i >>> 6 & 0x3f];
686            dArr[dLen - 2] = left == 2 ? CA[i & 0x3f] : '=';
687            dArr[dLen - 1] = '=';
688        }
689        return dArr;
690    }
691
692    private Base64() {
693        // No impl.
694    }
695}